

Certificado de calibración / medición

O. T. N° FM 102-14580 único N° de páginas del certificado:14

Objeto

Calibrador multiproducto

Fabricante / Marca

Fluke

Modelo / Número de serie

5500A / 6370005

Determinaciones requeridas

Calibración -

Fecha de calibración / medición 17 de mayo de 2011

Solicitante

VIDITEC S.A. para EDACI S.R.L. Laboratorio de Metrología

Humberto 1° 2887

(1231ACE)

Ciudad Autónoma de Buenos Aires

Buenos Aires, 17 de mayo de 2011

Jorge Cioffi

Lic. LUCAS D. DI LIPLO
COOR. ELECTRICIDAD
FÍSICA Y METROLOGÍA
INTI

Este certificado documenta la trazabilidad a los patrones nacionales, los cuales representan a las unidades de medida en concordancia con el Sistema Internacional de Unidades (SI).

Este certificado no podrá ser reproducido parcialmente sin la autorización del INTI. Los resultados se refieren exclusivamente a los elementos recibidos, el INTI declina toda responsabilidad por el uso indebido o incorrecto que se hiciere de este certificado.

Los resultados contenidos en el presente certificado se refieren a las condiciones en que se realizaron las mediciones.

El usuario es responsable de la calibración a intervalos apropiados.

Metodología empleada

Se calibró el instrumento de acuerdo a lo indicado en el Capítulo 7 Performance Tests del manual de operación número de parte PN 945159, midiendo las magnitudes eléctricas en los bornes de salida Normal y Auxiliar del calibrador con instrumental apropiado para cada función.

Al encontrar valores medidos que excedían a los especificados por el fabricante, a pedido del cliente se procedió a efectuar los ajustes indicados en el capítulo 3 del manual de servicio número de parte PN 105798 (Tabla 3-2 tensión continua bornes de salida normal, tabla 3-3 tensión alterna bornes normal, tabla 3-4 corriente continua bornes auxiliares, tabla 3-5 corriente alterna bornes auxiliares, tabla 3-6 tensión continua bornes auxiliares, tabla 3-7 tensión alterna bornes auxiliares, tabla 3-8 resistencia, tabla 3-9 capacidad).

Luego de realizar los ajustes mencionados se procedió a realizar la calibración del instrumento en las funciones y puntos de medición que se indican en las tablas que siguen en el presente certificado de calibración.

Para la medición de tensión continua en los bornes de salida Normal y Auxiliar (7-7 y 7-8 del manual de operación) se utilizó un multimetro digital marca Hewlett Packard, modelo HP3458A.

Para medir la corriente continua de salida del calibrador en los bornes Auxiliares (7-9 del manual de operación) se emplearon resistencias derivadoras de corriente de valores apropiados y un multímetro digital marca Hewlett Packard, modelo HP3458A para medir la tensión en bornes de las resistencias derivadoras.

La medición de resistencia en los bornes de salida Normal y Auxiliar (sensado) del calibrador (7-10 del manual de operación) se efectuó con un multímetro digital marca Hewlett Packard, modelo HP3458A. Para valores menores a 110 $k\Omega$ se configuró el calibrador Fluke 5500A a 4 terminales con la opción 4-wire COMP habilitada.

Para medir la tensión continua de corrimiento de cero en los bornes de salida Normal del calibrador en el rango de 100Ω (7-11 del manual de operación) se utilizó un multímetro digital marca Hewlett Packard, modelo HP3458A.

Las tensiones de corriente alterna medidas en los bornes de salida Normal y Auxiliar del calibrador fueron efectuadas por medio de un voltímetro marca Fluke, modelo 5790A, (7-12 y 7-13 del manual de operación).

Para la medición de corriente alterna en los bornes de salida Auxiliar del calibrador (7-14 del manual de operación) se emplearon resistencias derivadoras de corriente de valores apropiados y un voltímetro marca Fluke, modelo 5790A.

La medición de capacidad en los bornes de salida Auxiliar del calibrador (7-15 del manual de operación) se efectuó con un medidor digital LCR marca Hewlett Packard, modelo 4263A.

Para las mediciones del calibrador cuando genera tensiones proporcionales a temperatura se empleó un multímetro digital marca Hewlett Packard, modelo HP3458A conectado a los bornes de termocupla TC (7-17 del manual de operación).

Para la calibración del calibrador cuando mide tensiones proporcionales a temperatura se empleó un calibrador Fluke 5700A como generador de tensión conectado a los bornes de termocupla TC (7-18 del manual de operación).

La calibración de potencia en corriente continua se realizó midiendo las tensiones en los bornes de salida Normal según se detalla en (7-19 del manual de operación) y midiendo las corrientes en los bornes de salida Auxiliar del calibrador (7-20 del manual de operación). Se emplearon resistencias derivadoras de corriente de valores apropiados y un multímetro digital marca Hewlett Packard, modelo HP3458A.

La calibración de potencia en corriente alterna se realizó midiendo las corrientes en los bornes de salida Auxiliar según se detalla en (7-21 del manual de operación) y midiendo las tensiones en los bornes de salida Normal del calibrador (7-22 y 7-23 del manual de operación). Se emplearon resistencias derivadoras de corriente de valores apropiados y un voltímetro marca Fluke, modelo 5790A.

La calibración de fase entre las tensiones generadas por los canales Normal y Auxiliar se realizó con un contador marca Hewlett Packard, modelo HP53132A (7-24 del manual de operación).

La calibración de fase entre la tensión generada por el canal Normal y las corrientes generadas por el canal Auxiliar se realizó con un multímetro de referencia marca Zera, modelo RMM3000 (7-24 del manual de operación).

La medición de la frecuencia en los bornes de salida Normal del calibrador se realizó con un contador marca Fluke, modelo PM6665 (7-24 del manual de operación).

La calibración de tensión armónica en onda senoidal se realizó con un voltímetro marca Fluke, modelo 5790A en los bornes de salida Normal (7-27 del manual de operación) y en los bornes de salida Auxiliar (7-28 del manual de operación)

Se midió la tensión continua en presencia de alterna en los bornes de salida Normal del calibrador según se detalla en (7-29 del manual de operación) con un multimetro digital marca Hewlett Packard, modelo HP3458A.

Se midió la tensión alterna en presencia de continua en los bornes de salida Normal del calibrador según se detalla en (7-30 del manual de operación) con un multímetro digital marca Hewlett Packard, modelo HP3458A.

Condiciones de medición

Se conectaron, tanto el calibrador a calibrar como el instrumental utilizado como referencia, a la tensión de red eléctrica de 220 V, 50 Hz, en el laboratorio donde se hicieron las mediciones 8 horas antes de empezar la calibración.

Condiciones ambientales

Temperatura ambiente de medición: 23 °C

Humedad relativa ambiente: 50 %

Resultados

Las tablas que siguen muestran los valores medidos y las incertidumbres de calibración obtenidas.

Tensión continua medida en los bornes de salida Normal. (7-7)

Rango	Valor nominal	Valor medido	U (k=2)
	0.0000 mV	-0.0004 mV	0.4 μV
330 mV	329 mV	329.0017 mV	0.0010 %
	-329 mV	-328.9995 mV	0.0010 %
	0.000 mV	-0.001 mV	2 μV
3.3 V	3.29 V	3.289992 V	0.0009 %
	-3.29 V	-3.289974 V	0.0009 %
	0.00 mV	0.00 mV	10 μV
30 V	32.9 V	32.90009 V	0.0012 %
	-32.9 V	-32.90028 V	0.0012 %
	50 V	49.99993 V	0.0012 %
300 V	329 V	329.0007 V	0.0011 %
300 V	-50 V	-49.99980 V	0.0012 %
	-329 V	-329.0028 V	0.0011 %
	334 V	333.9979 V	0.0011 %
1000 V	900 V	900.0001 V	0.0011 %
1000 V	-334 V	-333.9985 V	0.0011 %
	-900 V	-900.0057 V	0.0011 %

Tensión continua medida en los bornes de salida Auxiliar. (7-8)

Valor nominal (NORMAL)	Valor nominal	Valor medido	U (k≡2)
, kravata kr	Confederate OV	0.000051 V	0.0012 mV
	0.329 V	0.329157 V	0.0010 %
3 V	-0.329 V	-0.329048 V	0.0010 %
3 V	0.33 V	0.330154 V	0.0010 %
	3.29 V	3.291047 V	0.0010 %
	-3.29 V	-3.290895 V	0.0010 %

Corriente continua medida en los bornes de salida Auxiliar. (7-9)

	Valor	Valor	U	Resistencia
Rango	nominal	medido	(k=2)	de carga [Ω]
	0 mA	0.010 μΑ	0.001 μΑ	
	0.19 mA	0.190000 mA	0.005 %	100
· :	-0.19 mA	-0.189990 mA	0.005 %	
3.3 mA	1.9 mA	1.89996 mA	0.005 %	
	-1.9 mA	-1.89994 mA	0.005 %	
	3.29 mA	3.28996 mA	0.004 %	
	-3.29 mA	-3.28992 mA	0.004 %	
	0 mA	0.100 μΑ	0.003 μΑ	10
	19 mA	19.0000 mA	0.001 %	
33 mA	-19 mA	-18.9997 mA	0.001 %	
	32.9 mA	32.9002 mA	0.001 %	
	-32.9 mA	-32.8999 mA	0.001 %	
	0 mA	0.6 μΑ	0.1 μΑ	
	190 mA	189.995 mA	0.001 %	
330 mA	-190 mA	-189.993 mA	0.001 %	1
	329 mA	328.994 mA	0.001 %	
:	-329 mA	-328.991 mA	0.001 %	
	0 A	0 μΑ	1 μΑ	
2.2 A	2.19 A	2.18971 A	0.003 %	
	-2.19 A	-2.18967 A	0.003 %	0.01
	0 A	40 μA	2 μΑ	0.01.
11 A	11 A	10.9994 A	0.002 %	
	-11 A	-10.9986 A	0.002 %	

Tensión continua medida en los bornes de salida Normal en el rango de 100 Ω . (7-11)

Valor	Valor	U	
nominal	medido	(k=2)	
0.000 mV	0.0010 mV	0.0004 mV	

1

Resistencia medida en los bornes de salida Normal. (7-10)

Valor	Valor	U
nominal	medido	(k=2)
0 Ω	0.00 mΩ	0.07 mΩ
2 Ω	1.99989 Ω	0.005 %
10.9 Ω	10.9003 Ω	0.007 %
11.9 Ω	11.9000 Ω	0.006 %
19 Ω	19.0000 Ω	0.004 %
30 Ω	30.0003 Ω	0.003 %
33 Ω	32.9999 Ω	0.003 %
109 Ω	108.999 Ω	0.002 %
119 Ω	119.000 Ω	0.002 %
190 Ω	190.002 Ω	0.001 %
300 Ω	300.003 Ω	0.001 %
330 Ω	329.999 Ω	0.001 %
1.09 kΩ	1.08999 kΩ	0.002 %
1.19 kΩ	1.19000 kΩ	0.002 %
1.9 kΩ	1.90002 kΩ	0.001 %
3 kΩ	3.00003 kΩ	0.001 %
3.3 kΩ	3.29999 kΩ	0.001 %
10.9 kΩ	10.8999 kΩ	0.002 %
11.9 kΩ	11.9000 kΩ	0.002 %
19 kΩ	19.0002 kΩ	0.001 %
30 kΩ	30.0001 kΩ	0.001 %
33 kΩ	32.9998 kΩ	0.001 %
109 kΩ	108.998 kΩ	0.004 %
119 kΩ	119.001 kΩ	0.004 %
190 kΩ	190.003 kΩ	0.003 %
300 kΩ	300.003 kΩ	0.003 %
330 kΩ	330.001 kΩ	0.002 %
1.09 MΩ	1.08999 MΩ	0.002 %
1.19 MΩ	1.19001 MΩ	0.002 %
1.9 MΩ	1.90007 MΩ	0.012 %
3 MΩ	3.00007 MΩ	0.010 %
3.3 MΩ	3.30002 MΩ	0.009 %
10.9 MΩ	10.9000 MΩ	0.007 %
11.9 MΩ	11.9001 MΩ	0.007 %
19 ΜΩ	19.0005 MΩ	0.064 %
30 MΩ	30.0010 MΩ	0.062 %
33 MΩ	33.0001 MΩ	0.061 %
109 MΩ	109.011 MΩ	0.059 %
119 MΩ	119.002 MΩ	0.059 %
290 MΩ	290.208 MΩ	0.021 %

Tensión alterna medida en los bornes de salida Normal. (7-12)

Valor nominal	Frecuencia	Valor medido	U (k=2) (%)
	9.5 Hz	30.4955 mV	0.034
	10 Hz	30.0186 mV	0.034
	45 Hz	30.0163 mV	0.013
Landa Carlos Salte	1 kHz	30.0161 mV	0.013
30 mV	10 kHz	30,0163 mV	0.013
#4 / 100	20 kHz	30.0178 mV	0.023
	50 kHz	30.024 mV	0.04
	100 kHz	30.032 mV	0.07
	450 kHz	30.02 mV	0.1
	9.5 Hz	300.210 mV	0.025
	10 Hz	300.020 mV	0.025
	45 Hz	300.016 mV	0.004
	1 kHz	300.010 mV	0.004
300 mV	10 kHz	300.002 mV	0.004
	20 kHz	299.989 mV	0.007
	50 kHz	299.961 mV	0.010
	100 kHz	299.92 mV	0.02
	500 kHz	299.6 mV	0.1
	9.5 Hz	2.99820 V	0.023
	10 Hz	3.00010 V	0.023
	45 Hz	3.00008 V	0.003
	1 kHz	3.00003 V	0.003
3 V	10 kHz	2.99996 V	0.003
	20 kHz	2.99989 V	0.006
	50 kHz	2.9997 V	0.01
	100 kHz	2.9995 V	0.02
	450 kHz	3.0000 V	0.05
	9.5 Hz	30.0676 V	0.023
	10 Hz	30.0009 V	0.023
	45 Hz	30.0010 V	0.004
30 V	1 kHz	29.9987 V	0.004
	10 kHz	29.9986 V	0.004
	20 kHz	29.9986 V	0.007
	50 kHz	29.998 V	0.01
	90 kHz	30.000 V	0.01
	45 Hz	300.022 V	0.005
300 V	1 kHz	299.987 V	0.005
	10 kHz 18 kHz	299.990 V 300.015 V	0.005 0.005
	•		0.005
	45 Hz 1 kHz	700.020 V 700.022 V	0.005
700 V	5 kHz	700.022 V 700.013 V	0.005
100 4	8 kHz	700.013 V	0.005
	10 kHz	699.970 V	0.005
<u> </u>	I TO KITE	1 099.970 V	0.000

1

Tensión alterna medida en los bornes de salida Auxiliar. (7-13)

Valor nominal (NORMAL)	Valor nominal (AUXILIAR)	Frecuencia	Valor medido	U (k=2) (%)
	1570年,1880年,1880年	45 Hz	10.0717 mV	0.028
	10 mV	1 kHz	10.0742 mV	0.028
	10111	5 kHz	10.0821 mV	0.028
		10 kHz	10.0894 mV	0.028
		9.5 Hz	301.100 mV	0.025
		10 Hz	299.980 mV	0.025
	300 mV	45 Hz	300.030 mV	0.004
300 mV	300 1114	1 kHz	300.062 mV	0.004
		5 kHz	300.027 mV	0.004
		10 kHz	300.025 mV	0.004
		9.5 Hz	3.00998 V	0.023
		10 Hz	2.99968 V	0.023
	3 V	45 Hz	3.00017 V	0.003
		1 kHz	3.00040 V	0.003
		5 kHz	3.00017 V	0.003
		10 kHz	3.00016 V	0.003
1000 V	10 mV	45 Hz	10.0740 mV	0.024
1000 V	100 mV	1 kHz	100.034 mV	0.005
500 V	100 1114	5 kHz	100.043 mV	0.005
250 V	1 V	10 kHz	0.99989 V	0.002

Exactitud como simulador de FEM proporcional a temperatura (7-17)

Valor nominal [°C]	Valor equivalente [mV]	Valor medido [mV]	U (k=2)
0	0.000	0.0000	0.001 mV
100	1.000	1.0000	0.04 %
-100	-1.000	-1.0000	0.04 %
1000	10.000	10.000	0.01 %
-1000	-10.000	-10.000	0.01 %
10000	100.000	100.000	0.001 %
-10000	-100.000	-99.998	0.001 %

Exactitud como indicador de temperatura (7-18)

Valor de entrada	Valor nominal [°C]	Valor medido [mV]	U (k=2)
0 mV	0.00	0.001	0.001 mV
100 mV	10000.00	100.001	0.002 %
-100 mV	-10000.00	-99.999	0.002 %

Corriente alterna medida en los bornes de salida Auxiliar. (7-14)

Valor nominal	Frecuencia	Valor medido	U (k=2) (%)	Resistencia de carga [Ω]
33 μΑ	1 kHz	33.091 μΑ	0.01	PATE CONTRACTOR
ου μΑ	10 kHz	33.110 μΑ	0.01	
	45 Hz	190.00 μΑ	0.01	(a) (b) (c)
190 μΑ	1 kHz	190.02 μΑ	0.01	Co. (6) (6) (7)
	10 kHz	190.00 μA	0.01	
	10 Hz	328.94 μA	0.02	4000
	45 Hz	328.99 μA	0.01	1000
329 μΑ	1 kHz	329.03 μA	0.01	
	5 kHz	329.03 μA	0.01	
	10 kHz	329.03 μA	0.01	
0.33 mA	1 kHz	0.33004 mA	0.01	
U.SS IIIA	5 kHz	0.33002 mA	0.01	
1.9 mA	1 kHz	1.9002 mA	0.01	200
I B IIIA	10 kHz	1.9000 mA	0.01	100
	10 Hz	3.2903 mA	0.04	
•	45 Hz	3.2906 mA	0.03	
3.29 mA	1 kHz	3.2909 mA	0.03	
	5 kHz	3.2905 mA	0.03	
	10 kHz	3.2904 mA	0.03	
0.0 4	1 kHz	3.3005 mA	0.03	14.
3.3 mA	5 kHz	3.3008 mA	0.03	
40. 4	1 kHz	19.001 mA	0.02	
19 mA	10 kHz	18.996 mA	0.02	7.6
	10 Hz	32.901 mA	0.03	
	45 Hz	32.900 mA	0.02	
32.9 mA	1 kHz	32.903 mA	0.02	
02.0 (5 kHz	32.900 mA	0.02	
	10 kHz	32.901 mA	0.02	
	1 kHz	33.005 mA	0.02	
33 mA	5 kHz	33.002 mA	0.02	
	1 kHz	190.00 mA	0.02	
190 mA	10 kHz	189.98 mA	0.02	
	10 Hz	328.95 mA	0.02	
	45 Hz	329.01 mA	0.03	
329 mA	1 kHz	329.04 mA		0.69
020 1117	5 kHz	329.01 mA	0.02	0.09
	10 kHz	329.02 mA	0.02	
****	1 kHz	0.33007 A	0.02	
0.33 A	5 kHz		0.02	
		0.33018 A	0.02	
2.19 A	45 Hz	2.1909 A	0.03	
2.19 A	1 kHz	2.1909 A	0.03	
	5 kHz	2.1908 A	0.04	
2.2 A	500 Hz	2.2017 A	0.03	0.01
	1 kHz	2.2018 A	0.03	
11 A	45 Hz	11.000 A	0.02	
ПΑ	500 Hz	11.000 A	0.02	
	1 kHz	11.000 A	0.02	

Capacidad medida en los bornes de salida Normal y Auxiliar (7-15)

Valor nominal	Frecuencia de medición	Valor medido	U (k=2) (%)
0.35 nF	1 kHz	0.35180 nF	0.47
0.48 nF	1 kHz	0.48183 nF	0.39
0.6 nF	1 kHz	0.60180 nF	0.19
1 nF	1 kHz	1.00180 nF	0.19
1.2 nF	1 kHz	1.2021 nF	0.19
3 nF	1 kHz	3.0013 nF	0.22
3.3 nF	1 kHz	3.3029 nF	0.18
10.9 nF	1 kHz	10.901 nF	0.18
12 nF	1 kHz	12.002 nF	0.19
30 nF	1 kHz	30.002 nF	0.18
33 nF	1 kHz	33.002 nF	0.18
109 nF	1 kHz	109.00 nF	0.18
120 nF	1 kHz	119.98 nF	0.18
300 nF	1 kHz	299.98 nF	0.18
330 nF	100 Hz	329.99 nF	0.20
1.09 µF	100 Hz	1.0899 μF	0.20
1.2 μF	100 Hz	1.1996 μF	0.20
3 μF	100 Hz	2.9991 μF	0.20
3.3 μF	100 Hz	3.2990 μF	0.20
10.9 μF	100 Hz	10.896 μF	0.20
12 μF	100 Hz	11.997 μF	0.20
30 μF	· 100 Hz	29.994 μF	0.20
33 μF	100 Hz	32.995 μF	0.20
109 μF	100 Hz	108.98 μF	0.21
120 μF	100 Hz	119.96 μF	0.21
300 μF	100 Hz	299.91 μF	0.26
330 μF	100 Hz	329.98 μF	0.27

Potencia en corriente continua medida en los bornes de salida Normal (7-19)

	- Lander Control of the Control of t	1. N. 1. A. C. L. D. A. C. C. A. C.	TATING TO REAL PROPERTY OF THE PARTY AND A SECTION OF THE PARTY OF THE	entral de la compresentación de la compresen
	Valor nominal	Valor nominal	Valor medido	U (k=2)
:	(Normal)	(Auxiliar)	(Normal)	~(%)~(
7	100 C	Provide the Control of the Control o	State Section Control of the Assessment of the Assessment	PARTICIPATION OF THE PROPERTY
	20 mV	2.19 A	19.9993 mV	0.003
	20 mV	11A	19.9993 mV	0.003

Potencia en corriente continua medida en los bornes de salida Auxiliar (7-20)

	and the second of the second o			新的智慧等的信息。在1947年中,
	Valor nominal	Valor nominal	不是自己的内容等的。如何是是自己的自己的人工会会。	。在ASAS 1000 (ASAS ASAS ASAS ASAS ASAS ASAS ASAS
	(Auxiliar)	(Normal)	(Auxiliar)	(%)
1	100 μΑ	1000 V	100.002 μΑ	0.003
1	1 mA	1000 V	0.99998 mA	0.003
	2.19 A	329 V	2.18976 A	0.020
	11 A	1000 V	11.0004 A	0.020

Potencia en corriente alterna medida en los bornes de salida Auxiliar (7-21)

Valor nominal (Normal)	Valor nominal (Auxiliar)	Frecuencia	Fase (grados)	Valor medido (Auxiliar)	U (k=2) (%)
1000 V	3.3 mA	65 Hz	0	3.30109 mA	0.043
1000 V	S.S IIIA	65 Hz	90	3.30134 mA	0.043
	33 mA	500 Hz	0	32.9946 mA	0.040
		500 Hz	90	32.9884 mA	0.040
1000 V		1 kHz	0	32.9980 mA	0.040
		5 kHz	, 0	33.0052 mA	0.040
		7 kHz	0	33.0092 mA	0.040
		10 kHz	0	33.013 mA	0.04
800 V	33 mA	10 kHz	0	33.012 mA	0.04

Potencia en corriente alterna medida en los bornes de salida Normal (7-22; 7-23)

Valor nominal (Normal)	Valor nominal (Auxiliar)	Frecuencia	Fase (grados)	Valor medido (Normal)	U (k=2) (%)
33 mV	11 A	65 Hz	0	33.0077 mV	0.013
33 1117	11 A	65 Hz	90	33.0262 mV	0.013
330 mV	11 A	1 kHz	0	330.048 mV	0.004
3.3 V	2.19 A	5 kHz	0	3.30025 V	0.003
3.3 V	329 mA	10 kHz	0	3.30002 V	0.003
329 V	2.19 A	5 kHz	0	328.982 V	0.005
700 V	11 A	1 kHz	0	700.010 V	0.005

A

Exactitud de fase entre los bornes de salida Normal y Auxiliar (7-24)

Valor nominal (Normal)	Valor nominal (Auxiliar)	Frecuencia nominal	Fase nominal (°)	Valor medido (Normal) (°)	U (k=2) (°)
Land Arth Congress	主在图图是否设施的逻辑	60 Hz	0	-0,02	0.05
		400 Hz	0,000	0.00	0.10
		1 kHz	0	0.00	0.10
		5 kHz	0	0.00	0.10
		10 kHz	0	0.00	0.10
		60 Hz	60	59.94	0.04
		400 Hz	60	59.72	0.10
3 V	1 V	1 kHz	60	59.71	0.10
		5 kHz	60	59.45	0.10
		10 kHz	60	59.99	0.10
		60 Hz	90	89.93	0.04
		400 Hz	90	89.72	0.10
		1 kHz	90	89.73	0.10
		5 kHz	90	89.45	0.10
		10 kHz	90	90.00	0.10
	300 mA	65 Hz	0	0.01	0.03
33 V	2 A	65 Hz	0	0.03	0.03
	5 A	65 Hz	0	0.03	0.03

Frecuencia medida en los bornes de salida Normal. (7-24)

Tensión de salida (Normal)	Frecuencia nominal	Valor medido (Normal)	U (k=2) (%)
	119 Hz	118.9991 Hz	0.0002
3 V	120 Hz	119.9999 Hz	0.0002
J 3 V	1000 Hz	999.9978 Hz	0.0002
	100 kHz	99.9998 kHz	0.0002

Exactitud de la tensión armónica medida en los bornes de salida Normal (7-27)

Valor nominal (Normal)	Valor nominal (Auxiliar)	Frecuencia (Auxiliar) [Hz]	Armónica (Normal)	Frecuencia (Normal) [kHz]	Valor medido (Normal)	U (k=2) (%)
		20	50	1	30.0192 mV	0.013
30 mV	300 mV	100	50	5	30.0192 mV	0.013
		200	50	10	30.0195 mV	0.013
	***	20	50	Server Sent Server	300.013 mV	0.004
300 mV	300 mV	100	50	5	300.010 mV	0.004
		200	50	10	300.005 mV	0.004
	3 V	20	50	[arg 5, 4, 1 storage]	3.00005 V	0.003
3 V		100	50	5	3.00002 V	0.003
		200	50	10	2.99999 V	0.003
		20	50	1 1 1	29.9989 V	0.004
30 V	3 V	100	50	5	29.9986 V	0.004
		200	50	10	29.9987 V	0.004
		50	20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	299.988 V	0.005
300 V	3 V	100	50	- 5	299.987 V	0.005
		200	50	10	299.992 V	0.005
		50	20	1	700.019 V	0.005
700 V	3 V	100	50	5	700.012 V	0.005
		200	50	10	699.974 V	0.005

Exactitud de la tensión armónica medida en los bornes de salida Auxiliar (7-28)

Valor nominal (Normal)	Valor nominal (Auxiliar)	Frecuencia (Auxiliar) [kHz]	Frecuencia (Normal) [Hz]	Valor medido (Auxiliar)	U (k=2) (%)
		1	20	329.067 mV	0.004
329	329 mV	5	100	329.024 mV	0.004
		10	200	329.027 mV	0.004
100 1114		1	20	3.29049 V	0.003
3.	3.29 V	5	100	3.29026 V	0.003
		10	200	3.29030 V	0.003

Tensión de corrimiento de cero con tensión alterna superpuesta a 1 kHz (7-29)

	Valor nominal ACV @ 1 kHz	Valor nominal DCV	Valor medido DCV (Normal)	U (k=2)
ſ	10 mV	0 V 50 mV	1.33 μV 50.0160 mV	0.35 μV 0.002 %
Ī	100 mV	0 V	10.97 μV	0.53 μV
F	1 V	500 mV 0 V	500.109 mV 0.104 mV	0.001 % 0.002 mV
L	1 V	5 V	5.00100 V	0.001 %
	3.3 V	45 V	0.562 mV 45.0010 V	0.014 mV 0.001 %

Tensión alterna a 1 kHz con tensión continua superpuesta (7-30)

Valor nominal ACV @ 1 kHz	Valor nominal DCV	Valor medido ACV (Normal)	U (k=2)
3.3 mV	50 mV	3.3020 mV	0.09 %
33 mV	500 mV	33.0080 mV	0.086 %
330 mV	5 V	329.938 mV	0.086 %
3.3 V	45 V	3.29900 V	0.093 %

Incertidumbre de medición

Incertidumbre asociada con el valor de la temperatura ambiente del laboratorio (k=2): 1 °C Incertidumbre asociada con el valor de la humedad relativa ambiente del laboratorio (k=2): 10 %

Observaciones

La incertidumbre de medición expandida informada fue calculada multiplicando la incertidumbre estándar combinada por un factor de cubrimiento k = 2, lo que corresponde a un nivel aproximado de confianza del 95% bajo distribución normal. Estos valores incluyen la incertidumbre del sistema de referencia y la repetibilidad de las mediciones del calibrador a calibrar. No contiene términos que contemplen el comportamiento a largo plazo del instrumento sometido a calibración.

Los valores informados para corriente son válidos para la resistencia de carga especificada en el presente certificado de calibración. Los mismos pueden variar según lo especificado en el manual de operación del instrumento, especialmente para tensiones en los bornes de salida de corriente mayores a 1 V y/o carga inductiva en corriente alterna.

El INTI es el máximo órgano técnico de la República Argentina en el campo de la Metrología. Es función legal del INTI la realización y mantenimiento de los patrones de las unidades de medida, conforme al Sistema Internacional de Unidades (SI), así como su diseminación en los ámbitos de la metrología científica, industrial y legal, constituyendo la cúspide de la pirámide de trazabilidad metrológica en la República Argentina. Los Certificados de Calibración/Medición emitidos por el INTI y por los Institutos Designados por el INTI en las magnitudes no cubiertas por éste, garantizan que el elemento calibrado posee trazabilidad a los patrones nacionales realizados y mantenidos por el propio INTI y los Institutos Designados por el INTI.

Con el fin de asegurar la validez, coherencia y equivalencia internacional de sus mediciones, el INTI, como miembro del Sistema Interamericano de Metrología (SIM), participa junto con otros Institutos Nacionales de Metrología en comparaciones interlaboratorios organizadas por las diferentes Organizaciones Metrológicas Regionales (OMR) o por el propio Comité Internacional de Pesas y Medidas (CIPM), a través de sus Comités Consultivos.

El INTI es asimismo firmante del Acuerdo de Reconocimiento Mutuo de Patrones Nacionales de Medida y Certificados de Calibración y de Medición emitidos por los Institutos Nacionales de Metrología (CIPM-MRA), redactado por el Comité Internacional de Pesas y Medidas, por el que todos los Institutos participantes reconocen entre sí la validez de sus Certificados de Calibración y de Medición para las magnitudes, campos e incertidumbres especificados en el Apéndice C del Acuerdo, el cual refleja las Capacidades de Medición y Calibración (CMC) aceptadas a nivel internacional, soportadas por comparaciones internacionales y realizadas bajo un sistema de gestión de la calidad basado en la norma ISO/IEC 17025. Este Acuerdo constituye la respuesta a la creciente necesidad de un esquema abierto, amplio y transparente para brindar a los usuarios información cuantitativa confiable sobre la comparabilidad de los servicios nacionales de metrología, proporcionando la base técnica para acuerdos más amplios en el comercio internacional y en los ámbitos reglamentados.

Las CMCs declaradas por cada participante del CIPM-MRA son aceptadas por los demás mediante un complejo procedimiento de evaluaciones, que en cada caso puede demandar varios años de actividad, hasta llegar a ser incorporadas en el Apéndice C de la base de datos que mantiene la Oficina Internacional de Pesas y Medidas (Bureau Internacional des Poids et Mesures - BIPM) en el sitio web http://www.bipm.org. Desde la firma del Acuerdo en 1999 hasta la fecha, el INTI ya ha presentado sus CMCs más relevantes en todas las magnitudes y continúa ampliando sus declaraciones.

Fin del Certificado

INSTITUTO NACIONAL DE TECNOLOGÍA INDUSTRIAL

▶ En Buenos Aires

fisicaymetrologia@inti.gov.ar · electronicaeinformatica@inti.gov.ar · mecanica@inti.gov.ar Colectora de Av. Gral. Paz 5445, e/ Albarellos y Av. de los Constituyentes - CC 157 (B1650WAB) - San Martín, Prov. de Buenos Aires, Argentina.

Tel. 54 011 4724-6200 / 6300 / 6400.

▶ En Córdoba

cba@inti.gov.ar

Av. Vélez Sársfield 1561 - CC 884 (X5000JKC) Córdoba, Prov. de Córdoba, Argentina. Tel.: 54 0351 469-8304 / 684835 Fax: 54 0351 4699459.

▶ En Rafaela

raf@inti.gov.ar

Ruta Nacional 34 km 227,6 · (S2300WAC) Rafaela, Prov. de Santa Fe, Argentina. Telefax: 54 03492 440471.

▶ En Rosario

ros@inti.gov.ar

Edificio INTI Esmeralda y Ocampo (S2000FHQ) Rosario - Prov. de Santa Fe, Argentina. Telefax: 54 0341 481-5976 / 482-3283 / 482-1030.

▶ En cualquier otro lugar del país: consultar sin cargo al 0800-444-4004, a consultas@inti.gov.ar o en www.inti.gov.ar.